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Are Phage Lytic Proteins the Secret Weapon To Kill
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Diana Gutiérrez,® Lucia Fernandez,® ©’ Ana Rodriguez,? Pilar Garcia?

anstituto de Productos Lacteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain

ABSTRACT Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most
threatening microorganisms for global human health. The current strategies to reduce
the impact of S. aureus include a restrictive control of worldwide antibiotic use, prophy-
lactic measures to hinder contamination, and the search for novel antimicrobials to treat
human and animal infections caused by this bacterium. The last strategy is currently the
focus of considerable research. In this regard, phage lytic proteins (endolysins and virion-
associated peptidoglycan hydrolases [VAPGHs]) have been proposed as suitable candi-
dates. Indeed, these proteins display narrow-spectrum antimicrobial activity and a virtual
lack of bacterial-resistance development. Additionally, the therapeutic use of phage lytic
proteins in S. aureus animal infection models is yielding promising results, showing good
efficacy without apparent side effects. Nonetheless, human clinical trials are still in prog-
ress, and data are not available yet. This minireview also analyzes the main obstacles for
introducing phage lytic proteins as human therapeutics against S. aureus infections. Be-
sides the common technological problems derived from large-scale production of thera-
peutic proteins, a major setback is the lack of a proper legal framework regulating their
use. In that sense, the relevant health authorities should urgently have a timely discus-
sion about these new antimicrobials. On the other hand, the research community
should provide data to dispel any doubts regarding their efficacy and safety. Overall, the
appropriate scientific data and regulatory framework will encourage pharmaceutical
companies to invest in these promising antimicrobials.
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taphylococcus aureus is one of the most important human pathogens, causing a

variety of diseases (skin, soft tissue, wound, bone, and bloodstream infections, toxic
shock syndrome, and food poisoning). This bacterium has become a serious threat in
hospitals, as it is one of the most common causes of nosocomial infections. Moreover,
the emergence of and increase in antibiotic resistance (especially methicillin resistance)
in clinical environments are really worrying. Recent data from the World Health
Organization (WHO) indicate that methicillin-resistant S. aureus (MRSA) strains are
responsible for more than 20% of all infections in WHO regions, but this percentage can
reach 80% in some countries (1).

Additionally, S. aureus is one of the major causative agents of food-borne diseases
in humans due to the production of enterotoxins (2). In 2014, consumption of food
products contaminated with S. aureus was responsible for 7.5% of all food-borne
outbreaks in the European Union (EU) (3). The presence of MRSA in farm animals is also
a serious concern, since animals can acquire and disseminate strains other than
livestock-associated MRSA (4). It is well known that the widespread use of antibiotics in
food animal production has favored the increase in multidrug-resistant bacteria (MDR)
that led to the current global health crisis (5, 6). To cope with this problem, several
countries have restricted the use of antimicrobials in animal farming (e.g., growth
promoters and disease prevention compounds) (7).
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FIG 1 (A) Bacteriophage lytic cycle. 1, Adsorption of phage to the bacterium; 2, injection of genetic material into the
cytoplasm; 3, replication of phage genetic material; 4, synthesis of phage components; 5, assembly of new phage particles;
6, bacterial lysis and release of phage particles. (B) Role of phage lytic proteins in the phage life cycle. VAPGHs favor the
injection of phage genetic material into the cytoplasm by the formation of a hole in the cell wall. Endolysins and holins
are produced at the end of the life cycle. Holins form a pore in the bacterial membrane, allowing the endolysin to reach
the peptidoglycan.

Bacteriophages, or phages, are viruses that exclusively infect bacteria as they carry
out their life cycle (Fig. TA). In most cases, the lytic life cycle ends with the death of the
bacterial cell, thereby making phages the natural killers of bacteria. Lysis can proceed
by one of two basic mechanisms. On the one hand, phages with a single-stranded
genome encode a lysis effector which inhibits the biosynthesis of bacterial peptidogly-
can. In contrast, release of the phage progeny in double-stranded DNA (dsDNA) phages
is mediated by two proteins, holin and endolysin, which are responsible for cell
envelope disruption. Once the lytic life cycle has been completed and the virion
particles are mature inside the bacterial cell, the holin forms pores in the inner cell
membrane, allowing access of the endolysin to the cell wall. Subsequently, endolysin
molecules degrade peptidoglycan, which is followed by osmotic lysis of the cell (Fig. 1A
and B). In addition, several phages can use the host cell secretion machinery (Sec
system) to release their endolysins and also encode a holin (pinholin) involved in
proton motive force dissipation to activate the secreted endolysin. Phages infecting
Gram-negative hosts are provided with additional proteins, named spanins, that help to
break the outer membrane (8).
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Virion-associated peptidoglycan hydrolases (VAPGHs) are structural components of
the virion particle and participate in the initial steps of infection by slightly degrading
peptidoglycan to allow entry of the phage genetic material into the bacterial cell
(Fig. 1A and B). Both types of lytic proteins, endolysins and VAPGHSs, are useful as
antimicrobials due to their potential for degrading peptidoglycan, resulting in cell lysis
when added exogenously. Recently, there has been a renewed interest in studying and
exploiting the potential of phages and phage lytic proteins to combat undesirable
bacteria (9-11). Additionally, phages can be used as tools for multiple health-related
applications, including vaccine development, gene delivery, and bacterial detection
(12).

In this context, this minireview aims to present and analyze the main advantages of
phage lytic proteins to combat S. gureus in balance with the main obstacles that
interfere with their commercialization.

MAIN CHARACTERISTICS AND PROPERTIES OF S. AUREUS PHAGE LYTIC
PROTEINS

(i) Structure and enzymatic activity. All phage lytic proteins (endolysins and
VAPGHSs) encoded by S. aureus bacteriophages have a modular structure, a common
trait displayed by endolysins from Gram-positive dsDNA phages (13). This modular
organization in distinct functional domains provides phage lytic proteins with two
useful properties. On the one hand, this structure confers remarkable substrate spec-
ificity (further explained at the end of this section), and on the other hand, it allows the
performance of protein engineering in order to design new proteins with enhanced
antimicrobial activities (see the next section).

Most staphylococcal phage endolysins possess one or two N-terminal catalytic
domains and one C-terminal cell wall binding domain (CBD). Interestingly, no signal
peptides or transmembrane domains have been described in staphylococcal phage
endolysins. A similar modular structure, consisting of one or two catalytic domains, was
described for VAPGHs, although these proteins always lack a known CBD (11) (Fig. 2B).

In order to understand the catalytic activities of phage lytic proteins, it is important
to look at the structure of their enzymatic target, bacterial peptidoglycan, which
consists of linear glycan strands cross-linked by short peptides. These glycan strands
are made up of alternating N-acetylglucosamine (GIcNAc) and N-acetylmuramic acid
(MurNAc) residues linked by B-1,4 glycosidic bonds. The p-lactoyl group of each
MurNAc residue is replaced with a peptide stem, whose composition in S. aureus is
L-Ala-D-Glu-L-Lys-p-Ala. Cross-linking of the glycan strands generally occurs between the
carboxyl group of p-Ala at position 4 and the amino group of the di-amino acid at
position 3 through a short peptide bridge composed of five Gly residues (14) (Fig. 2B).

The catalytic domains of phage lytic proteins are classified into 6 different types
according to their enzymatic activities against peptidoglycan: N-acetylmuramoyl-L-
alanine amidases, interpeptide bridge endopeptidases, L-alanoyl-p-glutamate endopep-
tidases, N-acetyl-B-p-muramidases, transglycosylases, and N-acetyl-B-p-glucosamini-
dases (Fig. 2B). On the one hand, lysozymes (or muramidases) and transglycosylases
cleave the N-acetylmuramoyl-B-1,4-N-acetyl-glucosamine bond, while glucosamini-
dases and amidases hydrolyze the N-acetylglucosaminyl B-1,4-N-acetylmuramine bond
and the amide bond between the sugar and the peptide moieties, respectively. Finally,
endopeptidases cleave the bond within the interpeptide bridge.

Endolysins from staphylococcal phages rarely contain transglycosylases. Instead, the
catalytic domains found in these proteins are LYSO (phage lysozyme domain), PET-M23
(peptidase domain M23), AMI-2 (amidase 2 domain), AMI-3 (amidase 3 domain), and
CHAP (cysteine- and histidine-dependent amidohydrolase/peptidase), with CHAP being
the most frequent domain (>74%) (13).

Regarding CBDs, endolysins derived from phages infecting S. aureus usually contain
SH3-related domains (accession number PF08460), with SH3_5 and SH3b being the
most common (13, 15) (Fig. 2). SH3b domains have been shown to bind to the
peptidoglycan peptide cross-bridge (16). However, there are some endolysins derived
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FIG 2 Structure and enzymatic activities of phage lytic proteins against S. aureus peptidoglycan. (A) The
typical modular structure of phage lytic proteins (endolysins and VAPGHs) is represented by the catalytic
domains and the cell wall binding domains (CBDs). (B) The structure of S. aureus peptidoglycan is shown, and
the enzymatic activities of the proteins are indicated with an arrow and a number. 1, N-Acetylmuramoyl-L-
alanine amidase; 2, interpeptide bridge endopeptidase; 3, L-alanoyl-p-glutamate endopeptidase; 4, N-acetyl-
B-p-muramidase; 5, transglycosylase; 6, N-acetyl-B-p-glucosaminidase.

from phages phiNM3, phi13, and MW1 where the CBD showed no homology to SH3b
(17). Daniel et al. (17) postulated that the phiNM3 CBD may bind to cell wall-associated
carbohydrates instead of the pentaglycine peptide cross-bridge. More recently, a new
type of CBD has been described in the endolysin of phage SA97 (LysSA97), which shares
only 19% homology with other staphylococcal endolysins deposited in databases (18).

Most phage endolysins possess high specificity against the genus or species infected
by the phage from which they derive, which represents a notable advantage over
classical wide-spectrum antibiotics. Nonetheless, the interaction of these proteins with
their substrate at the molecular level is not fully understood, so it is still not clear which
fragment of the molecule determines specificity. There are limited data regarding the
role of the catalytic domains in the specificities of endolysins. For example, fusion of
catalytic domains from the endolysin encoded by Streptococcus agalactiae bacterio-
phage B30 to a CBD specific for S. aureus strains can expand the lytic activity of the
chimeric protein to S. aureus (19). This suggests that catalytic domains do not exert
strict specificity. Regarding CBDs, Becker et al. in 2009 showed that a chimeric protein
consisting of the LysK SH3b domain and the streptococcal endolysin ASA2 catalytic
domain exhibited both staphylolytic and streptolytic activities (15). Therefore, the
specificities of endolysins might result from the combined interactions of catalytic and
binding domains with species-specific cell wall receptors in the peptidoglycan struc-
ture, which remain unknown to date. Indeed, analysis of the crystal tridimensional
structures of the individual domains might be useful for revealing these interactions
and for designing site-directed mutants with altered activity or substrate specificity
(20, 21).

(ii) Design of chimeric proteins. The development of phage lytic proteins as novel
antimicrobials entails systematic mining of naturally occurring proteins, as well as the
design of new ones. This process is greatly facilitated by the modular structure of
staphylococcal phage lytic proteins. Indeed, this organization allows exploring domain
deletion and shuffling as a route to obtain new endolysins with enhanced properties
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FIG 3 Schematic representation of the domain shuffling strategy to obtain chimeric proteins from two
phage lytic proteins. C1, C2, and C3 represent catalytic domains, while CBD1 and CBD2 represent
different cell wall binding domains.
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(Fig. 3). Some of the strategies used in the design of new lytic proteins include the
synthesis of truncated proteins, such as those containing only one catalytic domain or
one CBD, and the production of new chimeric enzymes by combining domains from
different lytic proteins. Thus, studies involving truncated proteins have demonstrated
that enzymes containing just the CHAP domain of the parental endolysin generally
display a slight increase in activity, whereas those containing only the amidase domain
frequently have no lytic activity (22-24). Interestingly, the design of chimeric proteins
has shown good results with regard to the development of improved lytic proteins. For
instance, a chimeric protein based on LysK, PRF-119, was obtained by fusing the CHAP
domain from LysK to the SH3b domain from lysostaphin (25). PRF-119 displayed very
good activity (i.e., the MICy, was 0.391 ug/ml for both MRSA and methicillin-susceptible
S. aureus [MSSA] strains). Another example is a derivative of endolysin Ply187 contain-
ing the CHAP domain fused to the SH3b CBD of endolysin LysK, which exhibited a
10-fold increase in specific activity over that with the truncated protein carrying the
individual CHAP domain (26). Similar results were obtained in studies that analyzed
whether the presence of more catalytic domains in a single endolysin molecule leads
to a higher activity. To test this hypothesis, chimeric proteins containing three catalytic
domains plus one CBD were obtained by fusing the two LysK catalytic domains with the
complete lysostaphin molecule. Unexpectedly, the resulting proteins showed interme-
diate activities compared with those of the respective parental proteins; i.e., for
S. aureus USA100, the MIC values were 14 pug/ml and 20 pug/ml for the chimeric proteins
K-L and L-K, respectively, which are between those determined for lysostaphin (1.2 ug/
ml) and LysK (96 ng/ml) (27).

Finally, an important step forward in the study of chimeric proteins against S. aureus
was the modification of phage lytic proteins to kill intracellular S. aureus. This was
achieved by using a protein transduction domain (PTD) composed of a short cationic
peptide sequence that facilitates crossing of the eukaryotic membrane by the lytic
protein. The same study also showed that lysostaphin requires the presence of a PTD
for the eradication of intracellular S. aureus. However, some chimeric proteins derived
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from LysK and lysostaphin did not require this domain to enter cultured bovine
mammary cells (27).

From all these data, we can conclude that domain shuffling is a powerful tool for
increasing the activities of phage lytic proteins. Of note, it has been widely proven that
CHAP domains from S. aureus phage lytic proteins possess higher activity than other
types of catalytic domains, at least under in vitro conditions (22-24). Moreover, the
addition of a CBD to an individual CHAP domain significantly increases its in vitro
activity (91).

(iii) Antibiofilm activity. One of the main obstacles for the eradication of S. aureus
in hospitals and food industries is its ability to form biofilms. These structures are the
most common lifestyle of bacteria in nature. S. aureus is not an exception, and most
strains show varied abilities to adhere to and grow on several biotic and abiotic surfaces
(28). Worryingly, biofilms represent a barrier to the actions of antibiotics and disinfec-
tants, hindering both the treatment of infections and the cleaning of surfaces. In this
context, there is considerable evidence with regard to the efficacy of phage lytic
proteins against preformed S. aureus biofilms. Some of the proteins with proven
antibiofilm properties are endolysins SAL-2, phi11, PlyGRCS, and SAL200, as well as the
chimeric proteins Chapter K (derived from LysK), ClyH (derived from the Ply187 and
phiNM3 endolysins), and ClyF (derived from the Ply187 and PlySs2 endolysins) (29-35).
In the case of the chimeric protein ClyH, the susceptibilities of biofilms turned out to be
dependent on the strain and the biofilm maturation stage. Thus, removal of 72-h-old
biofilms needed a longer treatment than removal of 24-h- and 48-h-old biofilms,
probably due to the presence of a greater amount of extracellular material (29).
However, complete removal of adhered cells in biofilms is not easy to achieve by using
phage lytic proteins. To solve this problem, some authors have proposed the use of two
consecutive rounds of treatment (36) and/or combination with antibiotics. For instance,
treatment of S. aureus biofilms with minocycline followed by treatment with endolysin
MR-10 can significantly reduce both young and mature biofilms formed by MRSA (37).
The main advantage of endolysins as antibiofilm agents over traditional antibiotics is
their ability to lyse bacteria even when they are not actively growing. In addition,
endolysin LysH5 was proven to be active against persister cells, which also contribute
to the recalcitrant nature of biofilms (36).

The development of products based on phage proteins to eliminate bacterial
biofilms requires accurate quantification of the antibiofilm activities exhibited by
different proteins. Indeed, such a technique is of paramount importance in selecting
those proteins that display the highest activity. Recently, a method that measures
biofilm formation and development in real time was validated to establish the antib-
iofilm activities of phage lytic proteins. This method relies on changes in the impedance
signals caused by S. aureus when attaching and detaching after protein treatment (38).

Besides in biofilm eradication, phage lytic proteins can be useful for the inhibition
of biofilm development. For instance, a feasible strategy that can be applied in the near
future to prevent the attachment of S. aureus to surfaces is manufacturing antimicrobial
surfaces coated with endolysins. In fact, lytic proteins can be attached to silica nano-
particles (SNPs) to facilitate surface incorporation or embedded into films of polyhy-
droxyethyl methacrylate, which has already shown efficacy against Listeria (39).

(iv) Bacterial resistance and adaptive responses. In addition to exhibiting high
antibacterial activity, a good antimicrobial agent should preferably not select for
bacterial resistance. To date, data about the emergence of resistance to endolysins in
bacteria belonging to different genera indicate that resistance acquisition is quite rare
or even nonexistent. Undoubtedly, this is one of the most valuable characteristic of
endolysins and might be linked to the fact that their targets in the peptidoglycan
molecule are essential for bacterial viability and fitness. As a result, mutations leading
to endolysin resistance would be too harmful for the bacterial cell (40). Moreover, most
S. aureus endolysins contain two catalytic domains, which theoretically would reduce
the probability of finding bacteria with a double modification in the target structures.
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There have been several attempts to study the acquisition of resistance to phage lytic
proteins in S. aureus, although no resistant bacteria were detected (41, 42). More
recently, it was described that sublethal exposure of S. aureus to LysK in liquid medium
yielded cultures for which the MIC increased 42-fold, while exposure in solid medium
resulted in only a 2-fold increase in resistance (27). In contrast, S. aureus cells exposed
to chimeric proteins formed by three catalytic domains (two catalytic domains from
LysK fused to lysostaphin) showed hardly any increase in resistance. Indeed, the
chimeric proteins K-L and L-K yielded cultures for which the MICs increased 8-fold and
2-fold, respectively, after exposure in liquid medium, whereas exposure in solid me-
dium did not lead to a detectable increase in resistance (27). These observations
support the importance of designing new chimeric proteins to improve the properties
of natural endolysins and VAPGHSs. In general, bacterial resistance development against
phage lytic proteins is lower than that obtained for traditional antibiotics, although the
frequency under in vivo conditions has not yet been determined. Besides resistance
development, a recent study has evaluated the transcriptional response of S. aureus
cells exposed to subinhibitory concentrations of phage lytic proteins. This study
revealed that endolysin LysH5 and the VAPGH-derived chimeric protein CHAPSH3b led
to the downregulation of genes encoding different proteins with autolytic activities
(43). Fernandez et al. linked these transcriptional changes to a decrease in biofilm
formation, as the major autolysin AtlA is an important factor in early stages of biofilm
development (43). This reinforces the usefulness of lytic proteins as antibiofilm com-
pounds. Interestingly, this article also showed that deletion of the autolysin-encoding
gene leads to low-level resistance to the two lytic proteins. This suggests that the gene
expression changes triggered by lytic proteins may confer some degree of adaptive
resistance to these antimicrobials, and therefore, this deserves to be evaluated before
the extensive use of these proteins.

THERAPEUTIC EFFICACY OF PHAGE LYTIC PROTEINS

(i) Animal models of infection. After confirming the effectiveness of phage lytic
proteins under in vitro conditions, it is essential to prove that they are also active in vivo.
For this purpose, different animal models have been set up to mimic infections caused
by S. aureus. These models allow testing the efficacy of therapeutic and prophylactic
treatments of these infections with lytic proteins (Table 1; Fig. 4A). Prophylaxis is
particularly relevant with regard to S. aureus due to its presence on human skin, which
constitutes a danger for patients with chronic diseases, immunocompromised patients,
and also for those subjected to surgery or hemodialysis. In some countries, nasal
decolonization in high-risk patients is currently carried out using mupirocin. However,
effective removal of S. aureus from the nose requires the administration of several
subsequent doses over 5 days, which raises the concern of mupirocin resistance
development (44). In this context, several phage lytic proteins have been assayed in
mice and rats to remove S. aureus from previously contaminated nostrils (27, 41, 45-47)
(Table 1). Another potential prophylactic application of endolysins is skin decoloniza-
tion of clinical patients, healthy workers, or food handlers. The effectiveness of this
measure has been evaluated by using skin models (porcine and murine) colonized by
S. aureus, where lytic proteins were applied by spraying or as an emollient ointment (33,
41) (Table 1).

Regarding infection treatment with phage lytic proteins, bacteremia has been the
most widely studied, probably because it is the most dangerous stage in the S. aureus
infection process. For example, induction of bacteremia in a mouse model by intra-
peritoneal injection of S. aureus (10° CFU/mouse) resulted in a mortality rate of 100%
within 3 days. However, administration of a single intraperitoneal or intravenous
injection of a solution containing a phage lytic protein significantly improved the
survival of mice (17, 32, 35, 37, 47-51) (Table 1). Moreover, this treatment significantly
reduced the inflammatory response caused by bacteremia (48). Thus, animals treated
with the lytic proteins exhibited normal levels of the cytokines gamma interferon
(IFN-7), interleukin 4 (IL-4), and IL-6 mRNA. However, it must be noted that different
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FIG 4 Current applications of S. aureus phage lytic proteins in human and animal therapy (A) and improvement

of food safety (B).

lytic proteins displayed various degrees of antimicrobial activity. For example, a study
described that six lytic proteins (80a, phi11, LysK, lysostaphin, 2638A, and WMY)
provided total protection from bacteremia-induced death but that Twort or phiSH2
conferred only partial protection (50).

Phage lytic proteins can also be used for the treatment of mastitis in farm animals.
To determine the feasibility of this application, a mouse model of mastitis was devel-
oped by infusion of 102 and 10* CFU into the mammary glands and subsequent
treatment with several lytic proteins (52). This treatment led to a significant reduction
in bacterial cell counts (Table 1). To date, the results available regarding therapeutic
trials with endolysins in cow udders are only preliminary but promising (53) (Table 1).
Clearly, additional studies are needed before commercialization of these antimicrobials
for application in cattle. Nonetheless, phage lytic proteins bring a positive outlook
about the future of infection control in animal farming without contributing to the rise
in antibiotic resistance.

Finally, the application of endolysins for the treatment of ocular infections after
surgery has also been explored, with good results (54) (Table 1). All these data confirm
the in vivo efficacy of phage lytic proteins against S. aureus infections and suggest that
lytic proteins do not trigger a significant immune response. Nevertheless, it is important
to highlight that lytic activities vary greatly between proteins, leading, in some cases,
to the need to administer a high-protein concentration. This may have consequences
for the immune response and needs to be carefully examined on a case-by-case basis.

(ii) Combination therapy with phage lytic proteins and other antimicrobials. A
strategy to improve the activities of phage lytic proteins is to combine them with other
antimicrobials, which may lead to a synergistic effect against the target bacteria (17, 49,

January/February 2018 Volume 9 Issue 1 e01923-17

Bacteremia| Dermatoses and
burn infections

mBio’

mbio.asm.org 9


http://mbio.asm.org

Minireview

55) (Table 1). This is the case of the lytic protein CF-301 and daptomycin, whose
combination significantly increased survival from bacteremia in mice compared to
levels of survival with the two antimicrobials used separately (55). Similarly, a combi-
nation of endolysin MR-10 and minocycline reverted systemic MRSA infection in mice,
resulting in 100% survival, and improved treatment of localized burn wound infections
(49). Moreover, phage lytic proteins also displayed increased antimicrobial activity
when combined with other proteins that hydrolyze peptidoglycan bonds. In a mouse
model of mastitis, for instance, the chimeric protein ASA2-E-LysK-SH3b showed a
synergistic effect with lysostaphin against S. aureus (52) (Table 1). A clear advantage of
combination therapy is that the synergistic effect allows reducing the doses of each
antimicrobial, thus limiting possible side effects. Moreover, this strategy may also
theoretically reduce the likelihood of development of bacterial resistance to antimicro-
bials with different mechanisms of action.

(iii) Safety studies. Before a new drug can be used for therapeutic purposes in
humans, several preclinical and clinical trials have to be performed. Preclinical studies
include pharmacokinetics, ADME (absorption, distribution, metabolism, and elimina-
tion), and other safety-related parameters, such as genotoxicity, mutagenicity, safety
pharmacology, and general toxicology (56). Among all these requirements, only a few
have already been met for S. aureus phage lytic proteins. For instance, the cytotoxicity
of phage lytic protein P128 against two cell lines, HEp2 and Vero, was evaluated by
using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) col-
orimetric assay to test any reduction in viability. No cytotoxic effect was observed even
at the highest concentration tested (2.5 mg/ml), which corresponds to more than 100X
the MIC of this protein against S. aureus (57).

Additionally, the safety of phage lytic proteins was evaluated by studying whether
they induced an inflammatory response and/or toxicity in animal models. A study
showed that repeated treatment of mice with MV-L protein (500 U) via intraperitoneal
injection triggered an immune response displayed as an increase in the level of
antibodies against this protein (47). However, there were no apparent adverse effects
for the animals or reduction in the antimicrobial activity of the protein (47). Moreover,
repeated topical application of the lytic protein ClyS resulted in a low production of
antibodies, and there was no inhibition of the lytic activity of the protein (17).

The toxicities of these proteins, as well as their intraperitoneal injection and topical
application, have been studied after single- and repeated-dose intravenous adminis-
tration. Phage lytic protein SAL200 was intravenously administered (2 to 100 mg/kg of
body weight) in mice and dogs, in general, with no abnormal findings. In safety
pharmacology studies, some abnormalities were observed in dogs after several doses
(usually when protein injection was performed for more than 1 week after the initial
administration), which disappeared without damage to the cardiovascular, respiratory,
and central nervous systems (58).

Another interesting study carried out pharmacokinetic and safety tests on lytic
proteins in monkeys. The maximum protein concentration in serum occurred immedi-
ately after administration and ranged from 40.5 to 378.4 ug/ml, the mean residence
time being approximately 1 h. Another parameter that should be taken into consider-
ation is the terminal half-life, defined as the time that it takes for a substance to lose
half of its pharmacological activity. The values determined so far range from 0.4 to 5.3 h
in males and 0.3 to 3.4 h in females after 1 day, whereas the terminal half-life ranged
from 1.8 to 9.7 h in males and 1.2 to 5.3 h in females after 5 days. This study also
assessed the safety and tolerability of SAL200 endolysin after intravenous administra-
tion of a single dose of 1 to 80 mg/kg/day for 6 days or multiple doses of 40 mg/kg/day
for 5 days. The protein was well tolerated, and no adverse effects were detected (59).

Keeping all these results in mind, it seems that in order to avoid any harmful effects,
the dosing period for phage lytic proteins should be shorter than 1 week and the dose
should be as low as possible within the efficacy range of the protein. In any case, further
studies are still needed to totally ensure the safety of these proteins.
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(iv) Human clinical trials and product pipeline. The use of phage lytic proteins for
the treatment of human infections is by far the research field of greatest interest among
all possible applications of these antimicrobials. Nonetheless, only one endolysin-based
product is currently on the market. The Dutch biotech company Micreos has developed
the first product containing an endolysin for human use, Staphefekt, which is specific
against S. aureus, including MRSA strains. This product is recommended for the early
stages of S. aureus-related skin infections, such as eczema, acne, and rosacea, resulting
in a reduction of inflammatory symptoms. Several formulations, such as creams and
gels, are currently commercialized under the Gladskin brand. It has recently been
demonstrated that this product can successfully treat chronic and recurrent S. qureus-
related dermatoses without generating bacterial resistance after long-term daily ther-
apy (60).

Protein SAL200 was recently assessed in the first in-human phase 1 study of a phage
endolysin-based drug to be administered intravenously. This work consisted of a
single-center, randomized, double-blind, placebo-controlled, single-dosing, and dose-
escalating study of intravenous SAL200 administration in healthy male volunteers. No
serious adverse effects were observed (61).

The company ContraFect recently started performing studies with CF-301, which is
thus far the only endolysin to have entered human clinical trials in the United States.
This protein has been specifically formulated for the treatment of S. aureus bloodstream
infections, including endocarditis. Phase 1 clinical trials performed with healthy volun-
teers showed no adverse effects when the protein was administered intravenously. The
company initiated phase 2 clinical trials with bacteremia patients in mid-2017 (https://
clinicaltrials.gov/ct2/show/NCT03163446#wrapper).

The Indian company GangaGen is working with the lytic protein P128 (StaphTAME),
which is intended for clearing nasal contamination of S. aureus in humans and is
currently undergoing phase 2 clinical trials. The goal of these clinical trials is to
determine the protein’s pharmacokinetics, immunogenicity, safety, and tolerability in
healthy adult volunteers. In a second study focused on assessing the safety and efficacy
of this product, the protein was applied to the anterior nares of S. aureus carrier patients
with chronic kidney disease who were on dialysis and also to clinical patients in stable
condition (https://www.clinicaltrials.gov/ct2/show/NCT01746654?term=NCT01746654
&rank=1). The company also plans to investigate the treatment of infected venous
ulcers, since a preliminary study has already shown the safety of the protein for topical
application.

Apart from the above-mentioned products, there is an important number of com-
panies working on the development of phage-based products for medical applications
(http://companies.phage.org/), some of which are already in different phases of clinical
trials. Satisfactory results in these clinical trials might pave the way for research
concerning new phage-derived proteins.

S. AUREUS PHAGE LYTIC PROTEINS FOR THE IMPROVEMENT OF FOOD SAFETY
The eradication of S. aureus from food environments (farm animals, industry sur-
faces, food handlers) (Fig. 4B) is indispensable to avoid contamination during process-
ing of foodstuffs. Phage lytic proteins offer an alternative to classical biopreservation
techniques (62-65) (Table 1) and contribute to the improvement of cleaning and
disinfection procedures [see “(iii) Antibiofilm activity” above]. For instance, endolysin
LysH5 was able to reduce S. aureus contamination in pasteurized milk down to
undetectable levels (65). Moreover, it was shown that the ability of these proteins to
remove pathogenic bacteria can be improved by combination with other food addi-
tives, such as essential oils and bacteriocins. For instance, the combination of endolysin
LysSA97 and carvacrol reduced S. aureus contamination below the detection limit in
both pasteurized skim milk and beef (62). Similarly, a synergistic effect between LysH5
and the bacteriocin nisin was observed for the elimination of S. aureus in milk (63).
Synergy between phage lytic proteins and other antimicrobials might be explained by
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an initial weakening of the cell wall caused by the endolysin, which might facilitate the
subsequent entry of the antibiotic or bacteriocin inside the bacterial cell (56).

One important issue regarding the use of phage lytic proteins as biopreservatives is
the effect on the protein effectiveness of the physicochemical composition of the food
matrix (66) and the strategy followed to deliver the protein into the food. One example
of the latter is the use of starter cultures secreting endolysin to avoid contamination
during the cheese manufacturing process. For example, Lactobacillus casei BL23 was
engineered to deliver endolysin Lysdb to keep low levels of S. aureus contamination
during production of cheese made from raw milk (67).

Finally, the ability to detect very low concentrations of pathogenic bacteria in food
is very relevant. In this regard, the CBDs from endolysins offer a good opportunity to
create specific biosensors with high affinity and specificity. For example, the CBD from
endolysin plyV12 was used to obtain coated beads able to concentrate S. aureus cells
by an inmunomagnetic separation method, the detection limit in milk being 4 X
103 CFU/ml in a testing time of 1.5 h (68).

CHALLENGES RELATED TO THE COMMERCIALIZATION OF PHAGE LYTIC
PROTEINS

(i) Large-scale production and formulation. The widespread use of phage lytic
proteins as antimicrobials would require large-scale production and proper purification
of these proteins. In this context, the two main difficulties that must be overcome for
translating from lab-scale to large-scale production are total production costs and
safety issues. Escherichia coli is the most common bacterium used for the expression of
recombinant proteins, since engineered strains are well known and there are several
molecular tools set up to work with this bacterium (69). Alternatively, high recombinant
protein yields can be obtained using the methylotrophic yeast Pichia pastoris or some
filamentous fungi (Aspergillus niger, Aspergillus oryzae, Aspergillus awamori, Chrysospo-
rium lucknowense, and Acremonium chrysogenum) (70).

To date, S. aureus endolysins have been purified mostly from E. coli, although it
would be possible to assess other systems for their expression; an example is
chloroplasts, which have the advantages that they lack endotoxins and have a low
cultivation cost. Indeed, the endolysins cpl-1 and Pal, specific to Streptococcus
pneumoniae, were successfully expressed in chloroplasts of Chlamydomonas rein-
hardtii (71). Moreover, a platform for expressing an endolysin against Propionibac-
terium acnes in cyanobacteria has recently been submitted for a patent (European
patent application WO 2016130024). The main advantages of microalgae are low
cost, easy upscaling, and the generally recognized as safe (GRAS) status of several
species. Similarly, expression of recombinant proteins in plants is also a feasible
alternative (72).

An important issue regarding proteins intended for therapeutic applications is the
purification degree. Proteins must be highly purified, especially those to be adminis-
tered parenterally. Suspensions of these proteins have to be sterile products obtained
after a high number of phases, including centrifugation, ultrafiltration, and chromato-
graphic steps, followed by sterilization by filtration and ultrafiltration. All these pro-
cesses must be performed in clean areas (73).

Finally, the formulation of therapeutic compounds containing lytic proteins requires
overcoming some issues, such as the stability of the proteins under storage conditions,
compatibility with the route of administration, and reduction of immunogenicity. Thus,
several formulations include the presence of polymers to avoid protein aggregation.
For instance, endolysin SAL-1 was formulated using calcium ions and poloxamer 188 to
prevent aggregation and to maintain stability during long-term storage (32). Similarly,
the stability of LysK was improved by forming complexes with polycationic polymers,
such as poly-L-lysines. The interactions between the protein and the polymers can
break down enzyme aggregates, increasing the lytic activity and keeping full activity for
at least 4 months (74). Similar results were obtained for the chimeric protein K-L
(containing the LysK CHAP endopeptidase and amidase domains, as well as the
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lysostaphin glycyl-glycine endopeptidase domain), which showed increased stability in
the presence of block copolymers of poly-L-glutamic acid and polyethylene glycol (75).
On the other hand, incorporation of the lytic proteins into these polymers has the
advantage of reducing their immunogenicity by hindering recognition by the immune
system. This also prevents the inactivation of the protein caused in some cases by the
polyethylene glycol used to reduce protein immunogenicity (75).

Regarding the use of lytic proteins for topical applications, e.g., skin decolonization
or disinfection, products can be formulated as an ointment using the commercially
prepared Aquaphor. This formulation contains 41% petrolatum and other ingredients,
such as mineral oil, ceresin, lanolin alcohol, panthenol, glycerin, and bisabolol, and
facilitates penetration of the phage lytic proteins into the skin (17).

Finally, the administration of phage lytic proteins might require a system to control
their delivery, such as nanoencapsulation. Release of these lytic proteins can then be
triggered by pH, temperature, redox gradients, ultrasound intensity, light, or electric
pulses (76). Some successful results have been obtained with a cocktail containing the
proteins Chapter K and lysostaphin, which were encapsulated in nanoparticles of
poly-N-isopropylacrylamide (PNIPAM). The encapsulated proteins were released from
the nanoparticles after a temperature increase, which simulated the conditions occur-
ring in the skin during an S. aureus infection (77). Overall, it seems that both production
and formulation issues regarding phage lytic proteins can easily be overcome in the
near future, as has been shown previously for other types of therapeutic proteins.

(ii) Regulatory framework. To date, no phage lytic proteins have been accepted for
human therapeutic use in Europe or the United States. The only exception is Staphefekt,
which is the first endolysin-based product approved in the EU under the status of “medical
device” (Medical Devices Directive 93/42/EC) (78). Aside from that, phage lytic proteins
might be approved as “biological therapeutic proteins,” since they exhibit properties similar
to those of other recombinant proteins that are already commercialized (79). Fortunately,
this seems to be a shorter path than the one necessary for the authorization of bacterio-
phages, since there is no current legal framework that allows companies to place on the
market bacteriophage products intended for human therapy (80).

In the United States, Food and Drug Administration (FDA) approvals for recombi-
nant proteins have consistently increased since the 1980s. In general, biologics-based
medicines have shorter authorization times than small molecules. For example, autho-
rization of recombinant enzymes takes about 5.9 years versus the 8.3 years required for
small molecules like antibiotics (81).

Another recent trend is the approval of some biologics under the Orphan Drug Act,
which was initially set up to encourage the development of drugs for rare diseases.
Orphan drugs have some advantages for their commercialization, as they have gov-
ernment financial incentives and smaller clinical trial sizes, shorter clinical trial times,
and higher rates of regulatory success than standard drugs (82).

It is important to note that the development of a new drug is estimated to cost 2.6
billion U.S. dollars and to take at least a decade (83). This high cost, along with the short
time of use of antibacterial agents by consumers, has made the development of these
compounds less attractive to pharmaceutical industries.

In the EU, the requirements for marketing medical products for human and veter-
inary use are regulated by directive 2001/83/EC (84) and EC regulation 726/2004 (85).
Within this framework, phage lytic proteins might be used in veterinary medicine for
the treatment of S. aureus infections, such as mastitis in cows. The European Medicines
Agency provides information for companies and individuals involved in developing and
marketing medicines for veterinary use in the EU. Meanwhile, medical products without
a marketing authorization can be used in patients with chronic diseases or when there
is no other product available to treat the disease by means of the Compassionate Use
Programs or Expanded Access Programs. Similarly, in the United States, House Reso-
lution 878 (the Right to Try Act of 2017 [https://www.congress.gov/bill/115th-congress/
house-bill/878/actions]), which allows patients who have been diagnosed with a ter-
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minal illness to be treated with drugs that have successfully completed phase 1 of
clinical investigation, has been proposed.

When used as biopreservatives in the food industry, endolysins are considered food
additives and regulated as such. In this regard, EC regulation 1333/2008 (86) states that
all additives in the EU must be authorized and listed with their respective conditions of
use in the EU’s positive list based on a safety assessment, technological need, and
assurance that use of the additive will not mislead consumers.

Last, but not least, phage lytic proteins can also be used as disinfectants. In the EU,
this requires approval under the Biocidal Products Regulation (BPR) (87). The regula-
tions concerning disinfectant approval in the United States are the Federal Insecticide,
Fungicide, and Rodenticide Act (FIFRA) (88) and the Medical Devices Amendments of
1976 (89) to the Federal Food, Drug, and Cosmetic Act (90). These two regulations are
overseen by the Environment Protection Agency (EPA) and the FDA, respectively. FIFRA
controls the commercialization of products for the disinfection of household and
clinical contact surfaces, whereas the Medical Devices Amendment regulates the use of
liquid chemical sterilants and high-level disinfectants used for disinfection of clinical
devices. The existing regulatory frameworks in both the EU and the United States
ensure that products are efficacious but exhibit low toxicity and environmental risks. As
a result, application for this type of approval generally requires a large number of
studies, leading to high costs and long processing times. In this scenario, the commit-
ment by the authorities to facilitate the process of approval of these products, as well
as the commitment of the companies to invest in product development, will be
essential to place these new antimicrobials on the market.

CONCLUDING REMARKS

Today, infectious diseases remain an important cause of death, a situation that can
only worsen with the increase in the antibiotic resistance of pathogenic bacteria.
Hopefully, the lessons learned since the time of Fleming will allow us to search for new
antimicrobials with improved characteristics against refractory bacteria. A set of phage
lytic proteins active against S. aureus are being studied for their application in urgent
medical scenarios, such as bacteremia and endocarditis. The structure of these proteins
offers many possibilities for their manipulation, and data about protein-substrate
interaction will be very valuable in understanding their mechanisms of activity and
specificity. An important issue that deserves further research is the potential develop-
ment of bacterial resistance to phage lytic proteins. Although this does not seem
particularly worrying at present, resistance selection under in vivo conditions still has to
be studied. More efforts are also needed to find the most adequate combinations of
phage lytic proteins and other antimicrobials able to totally remove S. aureus biofilms
from both clinical and food environments. The adaptive responses of S. aureus
biofilms exposed to phage proteins and their consequences regarding virulence
and resistance should also be elucidated. Overall, it can be concluded that there is
evidence of the effectiveness of phage lytic proteins as therapeutics in animal
models of disease and as food biopreservatives, although efficacy in the latter
application depends on the physicochemical properties of the food. On the basis of
these successful results, preclinical studies and clinical trials are under way. How-
ever, it is clear that further data about drug safety are still necessary. Nonetheless,
the support of pharmaceutical companies through investment in these antimicro-
bials is essential to definitely boost this research. In turn, this cannot be achieved
without an incentive from health authorities, together with a new legal framework
for authorization of these products.
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